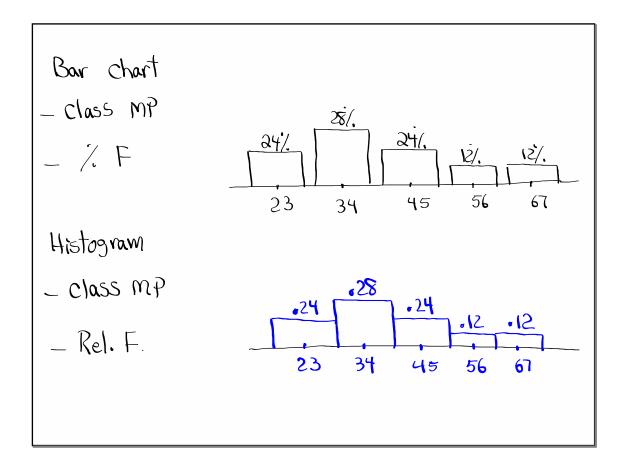
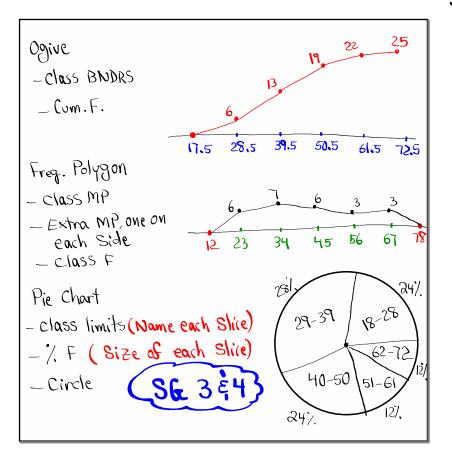

h

Consider the data below
2, 3, 5, 5, 10
1) Sample Size
$$n=5$$

3) Range = Max - Min
= 10-2=18
3) Midwange = $\frac{Max + Min}{2} = \frac{10+2}{2} = 6$ 4) Mode = 5
5) $\sum \chi = 3 + 3 + 5 + 5 + 10 = 25$ 6) $\sum \chi^2 = 3 + 3 + 5^2 + 5^2 + 10^2 = 163$
7) $\frac{\sum \chi}{n} = \frac{25}{5} = 5$ 8) $\frac{n \sum \chi^2 - (\sum \chi)^2}{n(n-1)} = \frac{5 + 163 - 25^2}{5(5-1)}$
 $= \frac{190}{20} = \frac{19}{2}$





I randomly selected 25 students. Here are
their ages.
1/89 1) n=25
2/0357 a) Range = 70-18=52
3/1245689 a) Range = 70-18=52
4/02579 3) Midvange =
$$\frac{70+18}{2}$$
 = [44]
5/0258 3) Midvange = $\frac{70+18}{2}$ = [44]
6/037 4) Mode = None
5/04 classes b) 5 classes
CW = Range
4 5 classes
CW = Range
5/2 = 13
15 whole = $p + 1$
CW = [4]
CW = [4]
CW = [14]

Make a freq. table with 5 classes [CW=1] class limits class BNDRS class MP class F [Cum. F | Rel. F | % F 18 - 28 17.5 - 28.5 23 6 6 ·24 24% 29-39 28.5-39.5 13 34 7 •28 28/ 19 •24 124/ 40- 50 39.5- 50,5 45 6 •12 51-61 50.5-61.5 127 3 dd 56 62 - 72 61.5 - 72.5 З •12 67 25 121 $\frac{29}{28.5}$, Class MP: $\frac{+ \text{ class limits}}{2}$, Rel. F. $\frac{-9}{71} = \frac{9}{25}$ <u>98</u> what ?. of these students are between 29 & 61, inclusive? 28/ +24/. +12/ =

Basic Computations in Statistics:

$$n \rightarrow Sample Size$$

 $x \rightarrow Data element$
 $\sum x \rightarrow Summation of x \rightarrow Add all data elements$
 $\overline{x} \rightarrow x - bar \rightarrow Sample Mean (Average)$
 $\overline{x} = \frac{\sum x}{n}$ Consider the Sample below
 $0 \ 2 \ 3 \ 5 \ 10$
 $1) n = 5$ 2) Range = 10 - 0 = 10 3) Midnange = $\frac{10 + 0}{2} = 5$
4) Mode = None 5) $\sum x = 0 + 2 + 3 + 5 + 10 = 20$
 $6) \overline{x} = \frac{\sum x}{n} = \frac{20}{5} = [4]$

Consider the Sample below
2 3 7 8 15 20 25 30
1)
$$\pi = 8$$

2) $\sum x = 2 + 3 + 7 + 8 + 15 + 20 + 25 + 30 = 110$
3) $\overline{x} = \frac{\sum x}{n} = \frac{110}{8} = 13.75$
a) Round to a whole # -> 14
b) Round to 1-decimal. -> 13.8

$$n - p \text{ Sample Size}$$

$$x - p \text{ Data element}$$

$$x^{2} - p \text{ Data element}^{2}$$

$$\geq x - p \text{ Add all data elements}$$

$$\geq x^{2} - p \text{ Square each data element, then add.}$$

$$\overline{x} - p \text{ Sample Mean } - p \overline{x} = \frac{\geq x}{n}$$

$$s^{2} - p \text{ Sample Mean } -p \overline{x} = \frac{\geq x}{n}$$

$$s^{2} - p \text{ Sample Mean } -p \overline{x} = \frac{\geq x}{n}$$

$$s^{2} - p \text{ Sample Mean } -p \overline{x} = \frac{\geq x}{n}$$

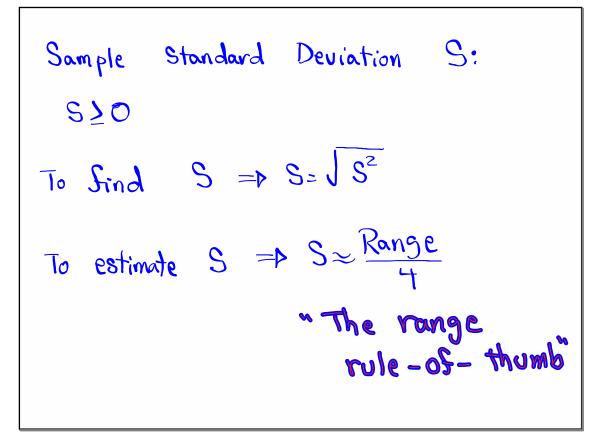
$$s^{2} - p \text{ Sample Mean } -p \overline{x} = \frac{\geq x}{n}$$

$$s^{2} - p \text{ Sample Mean } -p \overline{x} = \frac{\geq x}{n}$$

$$s^{2} - p \text{ Sample Mean } -p \overline{x} = \frac{\geq x}{n}$$

$$s^{2} - p \text{ Sample Mean } -p \overline{x} = \frac{\geq x}{n}$$

$$s^{2} - p \text{ Sample Mean } -p \overline{x} = \frac{\geq x}{n}$$


Г

Consider the Sample below

$$3 5 7 9 9$$

 $1) \pi = 5$ a) Mode = 9
 $3) 2x = 3 + 5 + 7 + 9 + 9$ $4) 2x^{2} = 3 + 5 + 7 + 9 + 9^{2} + 9^{2$

Г

Even:
$$M = 8$$
, $Zx = 57$, $Zx^{2} = 433$
 $Min = 4$, $Max = 10$
 $I)Range = 10 - 4 = 6$
 $2) Midrange = \frac{10 + 4}{2} = 1$
 $3) \overline{x} = \frac{2x}{N} = \frac{57}{8} = 1.125$
 $4) S^{2} = \frac{M \ge \chi^{2} - (\ge \chi)^{2}}{M(M-1)}$
whole $\Rightarrow 7$
 $1 - decimal \Rightarrow 7.13$
 $2 - decimal \Rightarrow 7.13$
 $215 = 56$ (Math) $1:$ by rac
 $Math$
 $Enter$
 $2:$ blecimal $\frac{215}{56} \approx 3.839$

Criven
$$n=8 \quad \sum x=96 \quad \sum x^2 = 1290$$

Min=7 $\max = 20$
Range = [13] $\operatorname{Midvange} = [13.5]$
 $\overline{x} = \frac{\sum x}{n} = \frac{96}{8} = [12] \quad S^2 = \frac{m \ge x^2 - (\ge x)^2}{m(n-1)}$
 $= \frac{9 \cdot 1290 - 96^2}{m(n-1)} = \frac{1104}{56}$
 $1104 : 56 \quad \operatorname{MATH} = 1: \text{ Frace Enter} = \frac{138}{128}$
Sind S
 $S = \sqrt{S^2} = \sqrt{\frac{138}{7}} \approx 4.440$
Estimate S
 $S \approx \frac{\operatorname{Range}}{4} = \frac{13}{4}$
 $\ge -\sqrt{S^2} = \sqrt{\frac{138}{7}} \approx 4.440$
 $= 138 \div 7$ $= 104$

Consider the Sample below
3 4 4 5 5
()
$$n = 5$$
 2) Mode = 4 \$\$ 5 3) \$\$ x = \$21
4) $$$ x^2 = 91$ 5) $$ \overline{x} = \frac{5x}{n} = \frac{21}{5} = 4.2$
6) $$^2 = \frac{m $$ x^2 - ($ x)^2}{n(n-1)} = \frac{5 \cdot 91 - 21^2}{5(5-1)} = \frac{14}{20} = \frac{1}{10} = \cdot 1$
7) Sind $$$ S = \sqrt{$S^2 = $\sqrt{.7}$}$
from algebra $$\sqrt{.7} = \cdot 1 = \cdot 831$
 $$\sqrt{x} = $x^{.5}$$
 $$\sqrt{x} = $x^{.5}$$

Z-Score - > To standardize $Z = \frac{x - \overline{x}}{s}$ Always round to 3-decimal places. Z Score is a value that indicates how many Standard deviation is the data element above or below the mean. It allows us to compare data elements Srom different Samples. -2< Z<2 => Usual element. Z(-2 or Z) => Unusual element.

Noelle got 90 on exam 1 and 79 on exam2.
Exam 1:
$$\bar{x} = 82$$
, $S = 5$ $Z = \frac{\chi - \bar{\chi}}{S} = \frac{90 - 82}{5} = \frac{8}{5}$
Exam 2: $\bar{\chi} = 70$, $S = 4$ = [1.6]
 $Z = \frac{\chi - \bar{\chi}}{S} = \frac{79 - 70}{4} = \frac{9}{4} = \frac{2.25}{2}$
Mark had a Z-Score of -1.5 on exam2.
What was his Score? $Z = \frac{\chi - \bar{\chi}}{S}$
Make Sure to -1.5 = $\frac{\chi - 70}{4}$
Make Sure to -1.5 = $\frac{\chi - 70}{4}$
bring TI-53 or Cross-multiply
 $TI = 54$ to class $\chi = 70 = 4(-1.5)$
 $\chi = 70 = 4(-1.5)$